ESAME DI STATO PER L'ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE
I SESSIONE - ANNO 2017
SEZIONE A-Settore Informazione

QUARTA PROVA

TRACCIA N. 1: - Informatica
Una azienda fornisce attrezzature d’ufficio (computer, stampanti, scanner...) a noleggio. L’azienda vuole tenere traccia delle proprie attrezzature, ed in particolare di quali sono attualmente noleggiate e di quali sono invece in manutenzione. Si vuole tenere traccia anche di tutti i noleggi avvenuti nel passato, ed in particolare delle informazioni di restituzione (ad esempio le condizioni in cui viene restituita l’attrezzatura). La società mantiene anche un archivio dei clienti, e permette la prenotazione via web delle attrezzature per il noleggio.
Il candidato
1. completi la bozza di requisiti specificata sopra; in particolare, si elenchino le operazioni da implementare
2. fornisca i casi d’uso del sistema, usando UML
3. fornisca una progettazione architetture del sistema
4. fornisca la progettazione di dettaglio della parte dati del sistema, in particolare per quanto riguarda le procedure di prenotazione e di consegna
5. discuta gli aspetti di sicurezza relativi al servizio di prenotazione via web (autenticazione, attacchi denial-of-service ...)

TRACCIA N. 2: - Misure
Il candidato fornisca il progetto di un sistema per la misura digitale della fase di un segnale sinusoidale con ampiezza 10mV e frequenza nell’intervallo [1-10] kHz, rispetto ad un segnale di riferimento, attraverso il metodo del sine-fit:
Il sistema dovrà essere scritto fornendo:
- il progetto del circuito di condizionamento, che consenta di adattare il livello di tensione all’ingresso della sezione di conversione A/D;
- i requisiti ed i parametri principali della sezione di conversione analogico-numerica, come la risoluzione, la risoluzione effettiva, la frequenza di campionamento, la tensione di riferimento.
- uno schema a blocchi della sezione di elaborazione numerica, evidenziando le connessioni tra il convertitore analogico-numerico ed il microprocessore;
- il listato della funzione di elaborazione, scritta in C, che riceva in ingresso il vettore dei campioni acquisiti e fornisca il valore di fase della sinusoida.
TRACCIA N. 3: - Automatica

Si consideri un sistema meccanico costituito da un braccio di massa \(m \) (supposta concentrata all'estremità del braccio) e lunghezza \(L \) opportunamente collegato ad una molla lineare con costante elastica \(k \) tale da avere una dinamica descritta dalla seguente equazione differenziale

\[
mL^2 \ddot{q} = \tau - mgL \sin q + kL^2 \cos q
\]

doche \(\tau \) è la coppia applicata al giunto del braccio e \(q \) la posizione angolare del braccio.

Si supponga di avere a disposizione una misura di forza \(F_m \) legata alle variabili di configurazione del sistema dalla relazione

\[
F_m = kL \sqrt{2} \sqrt{1 - \sin q}.
\]

- Si realizzi uno schema a blocchi del sistema evidenziando le variabili di stato, gli ingressi del sistema, le uscite (variabili da controllare) e le misure disponibili.
- Si studino le proprietà strutturali del sistema (controllabilità ed osservabilità).
- Considerando i seguenti valori numerici: \(m=10 \text{ kg}, L=1 \text{ m}, k=98 \text{ N/m} \) e \(g=9.8 \text{ m/s}^2 \),
 o si calcoli il punto di equilibrio corrispondente alla situazione in cui c'è forzamento nullo (\(\tau = 0 \)) e si ne studi la stabilità;
 o si calcoli il valore del forzamento che consente una posizione di equilibrio pari a \(q_{eq} = \pi/4 + \pi \) e si studi la stabilità di tale configurazione;
 o si progetti un controllore lineare con retroazione di uscita (che usi, quindi, solo la misura \(F_m \)) e che regoli il sistema nella posizione angolare di corrispondente a \(q_{eq} = \pi/4 + \pi \) con un tempo di assestamento inferiore a 0.5 secondi.
- Si discuta una possibile implementazione di una legge di controllo ipotizzando di misurare esattamente l'intero stato del sistema.